
RESEARCH PARADIGMS IN COMPUTER SCIENCE*

Peter Wegner
Brown University

Keywords and Phrases: Paradigms, research, computer
science, methodology, philosophy, empirical method~

abstraction, software engineering, complexity, program-
ming languages, analysis of algorithms.

"The empirical method is generally characterized
by the collection of large amounts of data before much
speculation as to their signifioance or without much
idea of what to expect, and is to be contrasted with
more theoretical methods in which the collection of
empirical data is guided to a large extent by prelim-
inary theoretical exploration. The empirical method
is necessary in entering into hitherto unexplored
fields and becomes less necessary the greater the ac-
quired mastery of the field."

- P.W. Bridgman, McGraw-Hill Encyclopedia of
Science andtechnology

Abstract

This paper explores the ramifications of four influ-
ential definitions of computer science:

i. Computer science is the study of phenomena rela-
ted to computers, Newell~ Perlis and Simon~
1967

2. Computer science is the study of algorithms,
F~nuth, 1968

3. Computer science is the study of information
structures, Wegner, 1968, Curriculum 68

4. Computer science is the study and management of
complexity, Dijkstra, 1969.

The first definition reflects an empirical tradition
since it asserts that computer science is concerned
with the study of a class of phenomena. The second and
third definitions reflect a mathematical tradition
since algorithms and information structures are two
abstractions from the phenomena of computer science.
The fourth definition reflects the great complexity of
engineering problems encountered in managing the con-
struction of complex software-hardware systems. It is
argued in section 1 that computer science was dominated
by empirical research pmradigms in the 1950s, by mathe-
matical research paradigms in the 1960s and by engineer-
in_~ oriented paradigms in the 1970s. Section 2 illus-
trates how these three phases of development are reflect-
ed in the field of programming languages.

The remaining sections consider in greater detail
how empirical, mathematical and engineering research
paradigms have affected the development of computer
science. Section 3 indicates that although the phe-
nomena of computer science are created by man they can

*This research was supported in part by AFOSR, AR0 and
ONR under contract N00014-76-C-0160.

be studied using the empirical techniques of the natural
sciences. Section 4 distinguishes between "micro com-
puter science" concerned with the study of individual
algorithms and "macro computer science" concerned with
the study of mechanisms and notations for specifying
all algorithms; and between intensional "how" specifi-
cations and extensional "what" specifications for pro-
grams and computing systems. Section 5 distinguishes
between the uses of the term "complexity" in software
engineering and the analysis of algorithms and suggests
that different terms he used to denote these two kinds
of complexity. In a final section it is argued that
the diversity of research paradigms in computer science
may be responsible both for our difficulties in decid-
ing how computer scientists should be trained and for
divergences of opinion concerning the nature of com-
puter science research.

i. Introduction

Computer science is in part a scientific discipline
concerned with the empirical study of a class of pheno-
mena l, in part a mathematical discipline concerned with
the formal properties of certain classes of abstract
structures, and in part a technological discipline con-
cerned with the cost-effective design and construction
of commercially and socially valuable products [Wl].
Research workers in computer sciencemay think of them-
selves as empirical scientists, mathematicians or en-
gineers. The research paradigms used by computer sci-
entists accordingly include paradigms taken from sci-
ence, mathematics and engineering. We shall briefly
characterize the research paradigms of empirical scienee
mathematics and engineering, and then consider the role
of each of these classes of paradigms in the development
of computer science.

The "classical" paradigm for the empirical sciences
assumes that there is an initial descriptive data-col-
lection phase during which a large amount of data con-
eerning phenomena in the domain of diseourse is collec-
ted. Observed uniformities and differences among phe-
nomena lead to a classification scheme and eventually
to the development of models and theories which account
for the observed data in an economical (parsimonious)
way.

Research in mathematics is concerned with the devel-
opment of abstractions from a class of phenomena and
with the study of properties of the abstractions inde-
pendently of the phenomena from which they were deri-
ved. If the abstractions are realistic models of the

iThe "phenomena" of computer science include digital
computers, programming languages, algorithms, programs,
and other man-made entities and concepts which owe their
existence to the development of computers.

322

class of phenomena from which they were derived, then
reasoning about the abstractions may provide useful
information concerning the class of phenomena.

Research in engineering is directed towards the
efficient accomplishment of specific tasks and towards
the development of tools that will enable classes of
tasks to be accomplished more efficiently. We are
usually given a "what" requirements specification of
what is to be accomplished and are asked to develop a
"how" implementation. The "what" specification may
generally be realized by a large variety of different
"how" implementations. The problem-solving paradigm
of the practicing engineer generally involves a sequen-
ce of systematic selection or design decisions which
progressively narrow down alternative options for
accomplishing the task until a unique realization of
the task is determined. The research engineer may use
the paradigms of mathematics and physics in the devel-
opment of tools for the practicing engineer, but is
much more concerned with the practical implications of
his research than the empirical scientist or the math-
ematician.

Computer science may, as a first approximation, be
characterized by three phases of development, respec-
tively dominated by empirical, mathematical and engin-
eering research paradigms.

i. A "data-gathering" phase from about 1950-1960
in which the prime activity was the discovery and
description of computational phenomena, with hardly
any work on the development of models, abstractions
or theories. The paradigm appropriate to this act-
ivity is the paradigm of the empirical sciences.

2. An "elaboration and abstraction" phase from
about 1961-1969 concerned with the extension and
elaboration of computers and languages discovered
in the 1950s, and with the development of abstrac -
tions to account for the observed properties of the
phenomena of computer science. The paradigm appro-
priate to this activity is the paradigm of math-
ematics.

3. A "technological" phase from 1970 onwards
concerned with the management of the increasingly
complex software-firmware-hardware systems required
for the solution of system and applications program-
ming problems. The paradigm appropriate to this
activity is the paradigm of engineering.

It is easy to find exceptions to this characteriza-
tion. For example, Turing's work on undeoidable prob-
lems preceded 1950. However, there is considerable
evidence that disciplines go through phases in which
they are dominated by different paradigms [K4]. The
characterization of the 50s as the age of empirical
discovery, the 60s as the age of elaboration and ab-
straction, and the 70s as the age of technological con-
solidation seems to fit the facts remarkably well.

It is natural for disciplines to evolve from an in-
itial empirical phase through a mathematical phase to
a "practical" engineering-oriented phase. Computer
science is distinguished by the rapidity of this evo-
lution so that research workers representing all three
paradigms are active in the same generation. The cur-
rent divergences of opinion in the academic community
concerning the nature of research in computer science
and concerning the form of undergraduate and graduate
education are in part due to the rapidity of this
evolution.

2. The Development of Programming Languages

The role of the empirical, mathematical and engin-
eering traditions in the development of computer sci-
ence may he illustrated by considering the field of
programming languages. The development of programming

323

languages may be characterized by three phases which we
shall call the age of empirical discovery, the age of
elaboration and analysis, and the age of technology.

1950-60 The age of empirical discovery

A remarkably large number of the basic concepts of
programming languages had been discovered and implemen-
ted by 1960. This period includes the development of
symbolic assembly languages, macro assembly languages,
FORTRAN, ALGOL 60, IPL V, LISP, COBOL and COMIT [SI].
It includes the discovery of many of the basic implemen-
tation techniques such as symbol table construction and
look-up techniques for assemblers and macro assemblers,
the stack algorithm for evaluating arithmetic expres-
sions, the activation record stack with display techni-
que for keeping track of accessible identifiers during
execution of block structure languages, and marking al-
gorithms for garbage collection in languages such as
IPL V and LISP.

This period was one of discovery and description of
programming languages and implementation techniques.
Programming languages were regarded solely as tools for
facilitating the specification of programs rather than
as interesting objects of study in their own right.
The development of models, abstractions and theories
concerning programming languages was largely a pheno-
menon of the 1960s.

1961-1969 The age of elaboration and abstraction

The 1960s were a period of elaboration of program-
ming languages developed in the 1950s and of abstrac-
tion for the purpose of constructing models and theo-
ries of programming languages.

The languages developed in the 1960s include JOVIAL,
PL/I, SIMULA 67, ALGOL 68 and SNOBOL 4. These lang-
uages are, each in a different way, elaborations of
languages developed in the 1950s. For example, PL/I is
an attempt to combine the "good" features of FORTRAN,
ALGOL, COBOL and LISP into a single language. ALGOL 68
is an attempt to generalize, as systematically and
cleanly as possible, the language features of ALGOL 60.
Both the attempt to achieve greater richness by syn-
thesis of existing features and the attempt to achieve
greater richness by generalization have led to exces-
sively elaborate languages. We have learnt that in
order to achieve flexibility and power of expression in
programming languages we must pay the price of greater
complexity. In the 1970s there is a tendency to re-
trench towards simpler languages like PASCAL, even at
the price of restricting flexibility and power of ex-
pression.

Theoretical work in the 1960s includes many of the
basic results of formal languages and automata theory
with applications to parsing and compiling" [AI]. It
includes the development of theories of operational and
mathematical semantics, of language definition techni-
ques and of several frameworks for modelling the com-
pilation and execution process [DSIPL]. It includes
the development of the basic ideas of program correct-
ness amd program verification [MI].

Although much of the theoretical work started in the
1960s continued into the 1970s, the emphasis on theor-
etical research as an end in itself is essentially a
phenomenon of the 1960s. In the 1970s theoretical
research in areas such as program verification is in-
creasingly motivated by practical technological consid-
erations rather than by the "pure research" objective
of advancing our understanding independently of any
practical payoff.

In the programming language field the pure research
of the 1960s tended to emphasize the study of abstract
structures such as the lambda calculus or complex struc-
tures such as ALGOL 68. In the 1970s this emphasis on

abstraction and elaboration is gradually being replaced
by an emphasis on methodologies aimed at improving the
technology of programming.

1970-? The age of technology

During the 1970s emphasis shifted away from "pure
research" towards practical management of the environ-
ment, not only in computer science but also in other
scientific areas. Decreasing hardware costs and in-
creasingly complex software projects created a "com-
plexity barrier" in software development which caused
the management of software-hardware complexity to be-
come the primary practical problem in computer science.
Research was directed away from the development of
powerful new programming languages and general theories
of programming language structure towards the develop-
ment of tools and methodologies for controlling the
complexity, cost and reliability of large programs.

Research emphasized methodologies such as struc-
tured programming, module design and specification, and
program verification [ICRS]. Attempts to design veri-
fiable languages which support structured programming
and modularity are currently being made. PASCAL, CLU,
ALPHARD, MODULA and EUCLID are examples of such "meth-
odology-oriented languages".

The technological, methodology-orlented approach to
language design results in a very different view of
what is important in programming language research.
Whereas work in the 1960s was aimed at increasing ex-
pressive power, work in the 1970s is aimed at constrain-
ing expressive power so as to allow better management
of the process of constructing large programs from
their environments. It remains to be seen whether the
management of software complexity can be substantially
improved by imposing structure, modularity and verifi-
ability constraints on program construction.

3. The Study of Phenomena Related to Computers

Computer science has been defined by Newell, Perlis
and Simon as "the study of phenomena related to com-
puters" [NI]. Although this definition may at first
strike the reader as tautological, it in fact provides
guidelines both as to the subject matter which should
be studied and as to the methodology which should be
used in studying the subject matter.

The definition emphasizes that physical computation-
al devices as opposed to models or theories should be
the central subject matter of computer science. This
view is implicit in the choice of "computer science"
rather than "computing science" as the name of the dis-
cipline. It is implicit also in the fact that the
British and American professional societies call them-
selves the British Computer Society (BCS) and the
Association for Computing Machinery (ACM).

The definition also suggests that computer science
is like an empirical science in that it is concerned
with the study of a class of phenomena. The phenomena
of computer science include digital computers and
"phenomena related to computers" like algorithms, pro-
grams and programming languages. The "empirical sci-
ence" paradigm suggests the collection of observations
(data) concering computational phenomena, and the det-
ermination of uniformities among computational pheno-
mena. When a sufficient set of observations has been
accumulated, theories which explain the phenomena may
be developed.

Computer science differs from physics or botany in
that its phenomena are not natural phenomena but man-
made phenomena like digital computers, programming
languages and algorithms. However, it is quite appro-
priate to think of a specific digital computer or pro-
gramming language as a data point of a data space of
digital computers or programming languages, and to

324

develop simplifying theories which allow us to charac-
terize spaces of computational phenomena so that we
can more easily select or design digital computers or
programming languages suited to a particular purpose.

The empirical science paradigm is appropriate to the
early data-gathering stage of computer science. More-
over, there are certain areas of current research, such
as the area of performance analysis and evaluation,
where the empirical science paradigm is still the most
appropriate. However, once a substantial amount of data
concering a class of phenomena has been collected, it is
inevitable that models and abstractions from observed
phenomena will be developed by mathematlcally-oriented
researehers who are more interested in the abstractions
than in the phenomena from which the abstractions are
derived.

Empirical research continues to be appropriate in
computer science whenever the systems being analyzed
are too complex to be understood by studying their in-
ternal structure and can he understood only by studying
their behavior. However, it is important not to give
up too easily in gaining a structumal understanding of
complex systems, since hehavioral information is "qual-
itatively" different from structural information and
can rarely, if ever, replace an understanding of system
structure. Attempts to gain an understanding of system
structure from an understanding of system behavior have
been notoriously unsuccessful.

Theoretical computer science is mathematical not only
because the process of model building and abstraction
is inherently mathematical, but also because computa-
tional phenomena such as programs have natural abstrac-
tions as mathematical objects sueh as functions. Theo-
retical computer science is in this respect like theo-
retical physics. However, the kind of mathematics
appropriate to the description of computational objects
can be very different from the kind of mathematics ap-
propriate to the description of physical objects.

4. Modelling and Abstraction

Modelling and abstraction in computer science makes
use of mathematics in two different ways.

i. A model or abstraction of an object requires
intuitive use of logical and mathematical notions
which corespond at the formal level to the notion
of a homomorphism.

2. In areas such as program verification, formal
languages and automata theory, and analysis of al-
gorithms, mathematics is required not only at the
meta level in establishing the model but also at
the object level in specifying objects being mani-
pulated in the model.

As a discipline matures, there is a tendency to
place increasing emphasis on abstractions used in mod-
elling the underlying phenomena. Two important abstrac-
tions in eomputer science are the notions of "algorithm"
and "infor~nation structure". These abstractions have
led to the following two influential definitions of
computer science:

AI: Computer science is the study of algorithms.
A2: Computer science is the study of representation,

transformation and interpretation of information
structures.

The definition A1 is due to Knuth and forms the con-
ceptual cornerstone of his seven-volume treatise on
"The Art of Computer Programming" [KI]. This view of
computer science is also the starting point for work in
computational complexity and the analysis of algorithms,
These subfields of computer science have come into bein~
only in the 1970s and have already replaced more tradi-
tional theoretical subfields such as formal languages al

automata theory as the do~ina~t area of theoretical
research. Knuth in [K2] asserts that "perhaps the
most significant discovery generated by the advent
of computers will turn out to be that algorithms, as ob-
jects of study, are extraordinarily rich in interesting
properties".

The definition A2 was used by Wegner as the unifying
abstraction in his book on Programming Languages, Infor-
mation Structures and Machine Organization [W2]. This
view of computer science has its historical roots in
information theory [$2]. It strongly influenced the
development of Curriculum 68 [C68] - a document which
has been very influential in the development of under-
graduate computer science curricula. It is implicit in
the German and French use of the respective terms
"Informatik" and "Informatique" to denote the disci-
pline of computer science.

It is interesting to note that the British term
"computer science" has an empirical orientation, while
the corresponding German and French terms have an ab-
stract orientation. This difference in terminology
appears to support the view that the nineteenth-century
traits of British empiricism and continental abstrac-
tion have persisted into the second half of the twen-
tieth century.

The definition A2 abstracts from specific mechanical
devices for transforming information structures such as
digital computers and from specific conceptual models
for function evaluation such as programming languages
and chooses the notion "information structure" as a
normal form for characterizing the phenomena of com-
puting. The notions of representation, transformation
and interpretation may be thought of as the counter-
parts of syntax, semantics and pragmatics. Syntax
characterizes a set of representations independently of
any transformational attributes they may possess. Sem-
antics may, in the context of the information structure
approach, be defined in terms of transformational prop-
erties of the representations. Pragmatics is concerned
with the relation between computational objects and the
human or mechanical interpreters which operate upon
them.

The view that information is the central idea of
computer science is both scientifically and sociologic-
ally suggestive. Scientifically, it suggests a view of
computer science as a generalization of information
theory which is concerned not only with the transmis-
sion of information but also with its transformation
and interpretation. Sociologically, it suggests an
analogy between the industrial revolution, which is
concerned with the harnessing of energy in the service
of man, and the computer revolution, which is concerned
with the harnessing of information in the service of
man.

The algorithm and information structure approaches
determine two different paradigms for the study of
computer science. This is borne out by the fact that
algorithms and information structure people have com-
pletely different attitudes to the study of computa-
tional problems, and tend to study different kinds of
problems. Algorithms people are concerned with the
design and analysis of efficient algorithms for partic-
ular problems, and with the attempt to find optimal
algorithms for performing a particular task. Informa-
tion structure people are concerned with the develop-
ment of mechanisms and notations for computing all com-
putable functions.

The distinction between the algorithm and informa-
tion structure approaches is essentially a distinction
between models for solving specific problems and models
for characterizing general-purpose tools. The ques-
tion of specificity versus generality is a recurrent
theme in computer science which is so pervasive that

it may be used as a basis for classifying work in com-
puter science into two categories. We may distinguish
between micro computer science concerned with the anal-
ysis and solution of specific problems and macro com-
puter science concerned with the development of general-
purpose tools, techniques and theories.

There are many disciplines in which there is a micro
paradigm concerned with the analysis of small-scale
phenomena and a macro paradigm concerned with the anal-
ysis of large-scale phenomena. Thus micro economics is
concerned with the analysis of small economic units
(individuals) while macro economics is concerned with the
analysis of large economic units (such as the gross
national product). In physics, quantum theory may be
regarded as part of micro physics while relativity and
the laws of thermodynamics may be regarded as part of
macro physics.

In computer science the specific micro phenomena are
individual programs and algorithms while the macro
phenomena are mechanisms, notations and theories for
the characterization of all algorithms.

The large amount of recent work on the analysis of
algorithms is largely micro computer science. Knuth's
volume 3 [KI], which devotes 600 pages to the analysis
of sorting and searching, illustrates the rich and
rewarding nature of work in micro computer science.

It is sometimes important to distinguish between the
specificity of the problem being solved and the spec-
ificity of the tool being used to solve the problem.
Many of the micro tools used in the analysis of algo-
rithms may be applied to a very broad class of differ-
ent micro problems.

Micro problems which at first seem too specialized to
be interesting turn out to have unexpected ramifica-
tions because of "algorithmreductions" which allow an
algorithm, say A, to be used as a basis for performing
a second seemingly different algorithm, say B. For
example, intensive study of 2x2 matrix multiplication
led to the development of an algorithm (Strassen's
algorithm [$3]) which allows 2×2 matrices to be multi-
plied in 7 rather than 8 multiplications. I personally
found this result singularly unexciting when I first
encountered it. However, this result allows us to de-
velop multiplication algorithms for n×n matrices with
an exponential saving in computation time, and to save
computation time in certain graph computation algor-
ithms, context-free language recognition algorithms and
many other algorithms related to matrix computation.
Thus, the Strassen algorithm for 2x2 matrix multiplica-
tion, which at first seems to be an incredibly special-
ized "micro" gimmick for a toy problem, turns out to
result in nontrivial potential savings of computation
time for quite a large class of non-toy problems.

Macro computer science includes the subfields of pro-
gramming languages and operating systems. It includes
the theoretical subfields of formal languages and auto-
mata theory, and of program verification, since these
subfields are concerned with properties of large classes
of algorithms rather than with properties of specific
algorithms. The newly emerging subfield of software
engineering is also macro computer science since it is
concerned with the development of tools for managing
the complexity of large classes of algorithms rather
than with the analysis of specific algorithms.

The terms micro and macro computer science character-
ize the two extremes of specificity and generality.
There is clearly a middle ground between the study of
properties of specific algorithms and the study of prop-
erties of all algorithms, which is concerned with the
study of properties of classes of algorithms.

One example of a class of algDrithms is the class of
all algorithms for realizing a given task (such as

325

sorting or matrix multiplication), Such classes of al-
gorithms are extremely rich and may contain many essen-
tially different algorithms for the same task whose
equivalence is by no means obvious (consider the rich
variety of different sorting algorithms). A task
specification may be regarded as a "what" specification
for the equivalence class of all algorithms ("how"
specifications) which realize the task. The set of all
algorithms in such an equivalence class generally has
a non-denumerable number of elements~ and is generally
intractable in the sense that the problem of determin-
ing whether two algorithms are in a given equivalence
class is unsolvable [W3]. The classical lower-bound
problem in computational complexity is the problem of
finding "optimal" algorithms for such equivalence
classes. This problem is intractable for the same
reasons that the equivalence problem is unsolvable.

A "what" specification of a task is referred to by
philosophers as an extensional specification, while a
"how" specification is referred to as an intensional
specification [CI] 2. The problem of relating exten-
sional "what" specifications of tasks with intensional
"how" specifications by algorithms or programs is one
of the fundamental problems of computer science. There
are some tasks for which the extensional specification
can be given by a simple mathematical input-output
relation so that the extensional task definition is
simpler than that of any intensional program realizing
the task. However, there are programs (with an unsol-
vable halting problem) that cannot be defined by any
input-output relation so that the class of extensional
objects specifiable by programs is richer than the
class of extensional objects specifiable by input-
output relations. Moreover, there are many practically
important computational tasks where the "what" specifi-
cation may be more complex than the "how" specifica-
tion, ~equiring many hundreds of pages. One of the
prime sources of difficulty in large programming pro-
jects arises from the fact that we have no mechanism
for "what" specifications that is as flexible as pro-
gramming languages are for "how" specifications. A
more flexible mechanism for "what" specifications would
be a very important contribution to the development of
computer science.

The difference between micro analysis of a specific
algorithm and "optimality" analysis for the class of
all algorithms which realize a given task can be char-
acterized in terms of a difference of the variable of
quantification. When analyzing a specific algorithm
we quantify over the set of all data values in the do-
main of the algorithm to obtain quantities such as
average and maximum running times. When analyzing the
class of algorithms for performing a given task, we
quantify over a class of algorithms rather than over a
class of data values. Since the class of data values
for an algorithm is generally denumerable while the
class of algorithms for a task is generally non-denum-
erable, optimality analysis for tasks is a less well-
structured problem than running time analysis for
specific algorithms.

Runninghtlme analysis for algorithms and optimality
analysis for tasks are subfields of the analysis of
algorithms which require different analysis techniques
and therefore different research paradigms.

Knuth in [K3] refers to the analysis of specific
algorithms as type A analysis and to the analysis of

2Carnap defines two designators (of objects) to have
the same extension if they are equivalent in a specific
interpretation and to have the same intension if they
are equivalent in all interpretations. This definition
captures the intuitive notion that two objects have the
same extension if they exhibit the same external beha-
vior and the same intension if they have the same in-

ternal structure. 326

families of algorithms for solving a particular problem
as type B analysis. In terms of our terminology, type
A analysis is micro analysis and is generally concerned
with intensional "how" specifications of algorithms,
while type B analysis falls in the middle ground between
micro and macro analysis and is concerned with proper-
ties of equivalence classes of algorithms associated
with an extensional "what" specification.

Another example of a naturally occurring family of
algorithms is the class of "important" algorithms
associated with a given area of application (such as
inventory control or automated design of military sys-
tems). There is a great deal of duplication of program-
ming among different system development efforts in a
given application area because of the lack of effective
technology ~ransfer or module standardization in the
application area. The development of standards for ap-
plications areas is an important practical problem that
falls in the middle ground between micro analysis of
properties of specific algorithms and macro analysis of
properties of all algorithms.

Three kinds of standardization are currently being
considered in the programming community.

i. Programming language standardization to facil-
itate portability of programs and cut down on
programmer-training costs.

2. Software methodology standardization, including
module interface conventions, programming style con-
ventions, requirements specification conventions,
documentation conventions, etc.

3, Applications area standardization to facilitate
portability and technology transfer in a given appli-
cation area.

Programming language and software methodology stan-
dardization are concerned with the development of
standard notations and environments for expressing all
algorithms. Applications area standardization is con-
cerned with standardization for restricted environments
and restricted families of algorithms. It is therefore
a less ambitious and possibly a more immediately reward-
ing undertaking than software methodelogy standardiza-
tion. The identification of major applications areas
and the characterization of their structure for purpose~
of standardization may turn out to be a rewarding re-
search and development activity with a high payoff.

5. The Management of Complexity

When computers were first developed in the 1940s,
computer time was very precious and software costs were
less than 5% of hardware costs. Computer pioneers like
Von Neumann assumed that computers would be used primar-
ily for solving well-defined numerical problems such as
simultaneous or partial differential equations.

In the 1950s and 50s hardware costs decreased by a
factor of 2 every two or three yearsand computers were
applied to increasingly ambitious system programming
and applications problems such as general-purpose oper-
ating systems, airline reservation systems, inventory
control systems, command and control systems, aircraft
and spacecraft guidance systems and natural language
understanding systems. Programming systems to accom-
plish such tasks may require millions of instructions
and millions of data items, and may require hundreds or
even thousands of man-years to complete. The great
increase in software costs combined with the decrease
in hardware costs has led to a situation where software
costs averaged 70% of total system cost in 1973, and
are projected to average over 90% of total system cost
by the year 2000. Thus, our problem-solving ability,
which was limited by hardware costs in the 1950s and
60s, will in the future be limited by software costs.

The increased relative cost of software is due in

part to the fact that hardware costs haYe consistently
declined more rapidly than software costs over the last
25 years, in spite of the fact that there have been
considerable improvements in software technology. It
may be due in part to the fact that the ratio of soft-
ware effort to computation time for current large soft-
ware projects is probably greater than that for the
well-defined numerical problems being solved in the
1950s. However, an additional and ultimately more im-
portant reason for skyrocketing software costs arises
from the fact that current large software systems are
much more complex (by any measure of complexity) than
the systems being developed 25 years ago or even ten
years ago. It was pointed out by Dijkstra that the
structural complexity of a large software system is
greater than that of any other system constructed by
man 3, and that man's ability to handle complexity is
severely limited [DI,D2]. As a consequence our ability
to manage large software systems simply breaks down
once a certain threshold complexity is approached.
The cost of systems which exceed this threshold becomes
prohibitively large. Moreover, it is not only the
high expected value of the cost, but also the very high
variance in the expected value, and the difficulty of
determining the correctness or degree of reliability
of delivered systems, that makes such systems unman-
ageable.

Since our future problem-solving ability is limited
primarily by our ability to manage complexity, the man-
agement of complexity is one of the most important cur-
rent problems of computer science. It is no accident
that the two most important new subfields of computer
science in the 1970s are computational complexity (con-
cerned with the theoretical study of complexity of
problems) and software engineering (concerned with the
practical management of complexity).

The term "complexity" has different meanings in the
fields of computational complexity and software engin-
eering. Computational complexity may generally be
measured by a quantitative index or Qbjective function
such as the number of instructions executed or the
amount of memory space used. Such complexity may gen-
erally be referred to as quantitative complexity, In
contrast, software complexity is not measurable by any
quantitative index but is a function of the structure
and complexity of interconnections of software compon-
ents. Such complexity may be referred to as qualita-
tive or structural complexity. Quantitative complexity
may be characterized by a number, while qualitative
(structural) complexity can be characterized only by
fuzzy terms such as "large" or "very large".

Dictionary definitions of the word "complex" in-
clude phrases such as "not easily analyzed or disen-
tangled" which suggest qualitative rather than quan-
titative complexity. The word "complex" is related
to the verb "plex" which means "to interweave" and has
been used in the computer literature to denote a very
general and abstract notion of structure [RI]. Use of
the term "complexity" in its quantitative sense in
phrases such as "computational complexity" or "algor-
ithmic complexity" does not accord with intuitive no-
tions of what is meant by complexity or with the dic-
tionary definition of this term. It is probably too
late now to change this usage, particularly since it
is difficult to think of some other appropriate term
to denote quantitative complexity. However, in order
to avoid confusion we should perhaps require the use
of an adjective such as quantitative, computational or
algorithmic when talking about quantitative complexity

3This assertion of Dijkstra is disputed by Bell and
Newell [BI] who assert that the structural complexity
of an aircraft carrier or of a city is greater than
that of even the largest programming projects.

327

and assume that the term "complexity" occurring without
an adjective always denotes qualitative complexity.

The notion of "structure" is a key term in the char-
acterization of qualitative complexity. This term is
etymologically related to the word "construct". Struc-
tures are central to computer hardware-software systems
because such systems are "constructed" in a complex and
subtle way from simple primitive components. The com-
plexity of structure of computing systems is directly
related to the complexity of the construction process.
One of the unifying abstractions in the study of hard-
ware-software complexity is the notion of a structure
which can be broken down hierarchically into success-
ively simpler component structure and ultimately des-
cribed in terms of atomic, non-decomposable elements.
Such a structure may be viewed in a bottom-up way in
terms of how successively higher-level structures are
constructed from primitive components, in a top-down
way in terms of how a designer might develop realiza-
tions of a "what" specification in terms of successive-
ly lower-level "how" specifications, or in an undirec-
ted way as a structure through which it is possible to
navigate in any way one pleases.

The activities of software engineering may all be
viewed as attempts to grapple with the management of
structure. It might be useful to undertake a taxonomy
of notions relating to the study of structure, identi-
fying certain notions such as general-purpose seiection
and construction operations as general-purpose notions
applicable to the study of all structures [$4], and
identifying other notions such as structured programming
and parameter passing in subroutines as special-purpose
notions applicable only to restricted structures.

Another important characteristic of qualitative com-
plexity is that "the whole is more complex than the sum
of its parts". Thus, if A and B are two subsystems
with complexity C(A) and C(B), then the complexity of
the combined system A+B satisfies the condition C(A+B)>
C(A)+C(B). This is the reverse of the triangle inequal-
ity.

One important concept which provides a starting point
for the management of software complexity is the notion
of the software life cycle, consisting of a requirements
analysis and specification phase, followed by a program
design, development and testing phase, followed by an
operations and maintenance phase [ICRS]. Before the
emergence of the life cycle concept, managers of soft-
ware projects emphasized program efficiency and effic-
ient program development, leading to local cost optimi-
zation of a part of the software life cycle, possibly
at the expense of much greater costs in other parts of
the life cycle.

The realization that the operation and maintenance
phase was just as critical as the development phase
or the requirements phase in software development
caused many of the assumptions of programmers and pro-
gramming language designers to be overthrown. For ex-
ample, it turned out that readability of programs was
more important in the maintenance phase than writability,
and modifiability was in many instances as important as
efficiency.

The life-cycle point of view allows us to systemat-
ically look at all the activities of the software life
cycle and all the tools used in managing the software
life cycle, to distinguish between activities which we
can do well and those we do not know how to do at all,
and to distinguish between critical activities whose
improvement would substantially improve overall cost
and non-critical activities. From this point of view
programming languages may well have been critical to
overall software management in the 1950s and 1960s, but
may have become non-crltical in the 1970s because fur-
ther improvements due to further research may turn out
to be marginal.

Our ability to manage software complexity can be
improved in the following two ways:

i. Provide a good management structure for man-
aging software complexity over its life cycle,

2. Decompose the problem in such a way that it
can be efficiently handled by the management
structure.

The chief programmer team is an example of a manage-
ment structure developed for handling a certain level
of software complexity (programs of up to about 100~000
instructions). It has achieved certain spectacular
successes but appears to be limited in its applicabil-
ity both because the organizational structure cannot
be extended to handle really large projects (with many
millions of instructions) and because it handles only
the program development part of the software life cycle
and does not provide for adequate services in the main-
tenance part of the life cycle.

Structured programming is an example of a tool de-
veloped to handle program decomposition. It has
proved quite influential in affecting programming style
and programming language design but is limited in its
applicability because it is concerned with program
structure at the statement level (programming in the
small) rather than with program interfaces at the mod-
ule level (programming in the large). Systematic tech-
niques for module decomposition and interconnection may
ultimately yield greater benefits in the management of
complexity than the statement-level modularity made
possible by structured programming techniques.

A good management structure allows the threshold
of complexity of problems handled by the organization
to exceed the threshold which can be handled by an
individual. The complexity threshold for an organiza-
tion is very sensitive to both the formal and informal
relations among individuals of the organization, and is
probably very time-dependent[B2].Human factors research
to determine good robust organizational structure for
handling a high complexity threshold would probably be
very rewarding. Research of this kind has almost cer-
tainly been done by industrial engineering researchers
and/or behavioral psychologists. Managers of computer
projects would probably benefit by finding out about
such work.

A complex problem may be decomposed into subproblems
in an enormous variety of different ways. A "bad" way
of decomposing a problem may be exponentially worse in
its complexity than a "good" way of decomposing the
problem. Good problem analysis is probably more crit-
ical than good management structure in pushing back the
complexity barrier, and one of the objeetives of man-
agement structures like chief programmer teams is to
ensure good problem analysis. Ideally, it would be
nice to find an "optimum" way of solving the problem
by minimizing its complexity. However, in practice
there is no precise way of measuring qualitative com-
plexity and we must be satisfied with fuzzy notions
like "good" and "better".

Software engineering, just like other branches of
engineering, is concerned with the construction of a
product. Thus, civil engineering is concerned with
the construction of buildings and bridges, computer
engineering is concerned with the construction of com-
puters, and software engineering is concerned with the
construction of software.

Software is like other engineering products in that
it is constructed out of primitive components (raw
materials) by a sequence of operations controlled by
humans. Tools may allow part of the construction pro-
cess to be automated, just as in the case of other
products. The total cost of the product may be meas-
ured in terms of the direct cost in human effort and

328

the indirect cost of tools, The construction process
may be capital-intensive (making heavy use of tools) or
labor-intensive (building the system from scratch).,

However, software differs from other products in that
it is a mental rather than a physical product. It is
not possible to feel or smell software. The degree of
completion of a building can be measured directly by
looking at the partly completed structure, while the
degree of completion of a piece of software cannot he
determined by looking at the partly written code. (Note
that the difference here is primarily due to the fact
of our confidence in the structural soundness of a part-
ly completed building and our lack of confidence in the
soundness of a partly written program. Thus the differ-
ence between software and other products resides more
in our inability to guarantee the correctness of compon-
ents than in the difficulty of "seeeing" the partly com-
pleted structure.)

One of the prime objectives of software engineering
is to develop standards for software construction that
will allow the same standards of quality and production
control to be applied to software as to other engineer-
ing products. These objectives require the development
of techniques for testing and certifying the correctness
of components.

One of the chief differences between software and
other engineering products lies in the great complexity
of software components and the subtlety of possible
interconneetions among components. Control over soft-
ware products will require restriction of possible
intereonneetions among modules to a subset whose effect
may be easily understood.

When a civil engineer designs a bridge or a building
to certain requirements, he selects the final design
from an enormous variety of designs satisfying the
requirements, using both explicit and implicit criteria
for narrowing down the choices. A software engineer
similarly has an enormous number of potential designs
satisfying the requirements and must similarly use both
explicit and implicit criteria for narrowing down the
set of choices. The explicit criteria are part of the
emerging "science" of software engineering while the
implicit criteria are part of the "art" of computer
programming. One of the objectives of software engin-
eering is to increase the science component and decrease
the art component in the development of large software
systems.

The fact that software engineering aims to increase
the science component and decrease the art component in
the programming process has both its good and bad as-
pects, It is good in that the programming process be-
comes more predictable and hopefully cheaper and more
reliable. But this is achieved at the cost of imposing
severe constraints on the freedom of action of the pro-
grammer which may in certain instances prevent the pro-
grammer from finding the best solution to the problem.

The discipline imposed by software engineering may be
seen by certain free spirits as a form of fascism while
the lack of programming restrictions of the 50s and 60s
may be seen by these programmers as a form of free
enterprise. In the programming community, just as in
society at large, it is sometimes necessary to trade
some personal freedom in the interests of efficiency of
society as a whole. The degree to which this tradeoff
is worth while in computer programming is an issue that
is still to be decided.

6. Conclusions

A number of different research paradigms have been
considered in the body of this paper. It is evident
that each of the paradigms plays an important role in
the development of the discipline as a whole, and that
the "edueated" computer scientist should feel at home

with all of the approaches to research that have been
discussed. The computer scientist should be a "uni-
versalist", having the enquiring mind of the empirical
scientist, the modelling and abstraction ability of
the mathematician, and the tool buildling and implemen-
tation ability of the engineer.

The training of such universalists presents a prob-
lem in computer science education, especially in an age
where the tendency is towards increasing specializa-
tion. There have been a few examples of universalists
in the 20th century, such as the World War II physic-
ists who overcame formidable problems in physics,
mathematics and engineering in the development of the
atom bomb. However, these physicists were primarily
educated in prewar Europe, and the educational systems
of postwar America or even postwar Europe simply have
not generated the intellectual excitement and the per-
sonal dedication necessary for the creation of a gen-
eration of universalists.

There have been a number of attempts to develop am-
bitious computer science curricula which combine a
thorough training in mathematics, statistics, opera-
tions research and numerical analysis with a solid sys-
tem programming base and an introduction to management
techniques for complex organizations. However, such
programs have consistently attracted only small numbers
of students. There is some concern among academic
computer scientists concerning the fact that we may not
be providing the right training for computer science
undergraduate and graduate students, but it is very
difficult to come up with a constructive viable program
either at the undergraduate or at the graduate level.
The curriculum committee of the Association for Comput-
ing Machinery developed an influential curriculum re-
port in 1968 [C68], but has found the task of preparing
a revised report appropriate to the mid-1970s much
harder than anticipated.

One clear conclusion is that the management of com-
plexity is a critical problem which must be addressed
if we are to make further progress in the computer man-
agement of complex systems. There are indications that
complexity is becoming a key problem in areas other
than computer science. The availability of computers
has greatly increased our ability to create complexity
and the world in the second half of the twentieth cen-
tury has, partly as a result of computers, become much
more complex. This complexity has caused social, econ-
omic and political problems to become unmanageable to
the extent that we may be strangled by the complexity
and unmanageability of the institutions that we have
created. The problems of complexity appear to be par-
tlcularly acute in "democratic" societies, and there
is a tendency both in society as a whole and in the
community of programmers to restrict the freedom of
individuals in order to simplify problems of management.

The two critical characteristics of computer science
in the 1970s are complexity and universality. Although
complexity has in recent years received greater atten-
tion than universality, it may well be that the uni-
versality problem is just as fundamental and difficult
to handle as the problem of complexity. The relation
between complexity and universality may be character-
ized as one of depth versus breadth. A complex prob-
lem generally has a structure with several levels of
hierarchy and may be understood only by intensive study
of details of the particular problem. Universality
requires an overall understanding of broad concepts and
methodologies and in some ways represents the anti-
thesis or perhaps the dual of the notion of complexity.
The "compleat" computer scientist must master both com-
plexity and universality. That is, he must combine
the traits of the code jock with the ability to handle
broad concepts and perspectives. People who possess

329

all the above traits are few and far between, although
Knuth is perhaps an example of a compleat computer
scientist in our generation.

Current work in software engineering and the analysis
of algorithms has made us aware of some of the problems
and bottlenecks which stand in the way of the further
development of computer science, but we have not made
much headway in the solution of these problems. It is
not at present clear whether new methods of managing
complexity will allow us to push back the complexity
barrier by several orders of magnitude or whether such
techniques will result in only a trivial increase in
our ability to solve complex problems cheaply and reli-
ably. The optimists feel that the complexity of our
current problems is due entirely to the fact that we
have not yet found the right algorithms, languages and
methodologies for solving them, while the pessimists
feel that the complexity is inherent in the nature of
the problem and that there is no way of substantially
pushing back the complexity barrier.

Acknowledgements: Ken Magel, Bob Sedgewick and Andy
van Dam provided constructive criticism in the develop-
ment of this paper.

References:

[AI] Aho, A.V. and Ullman, J.R., The Theory of Pars-
ing, Translation and Compiling, Prentice-Hall,
Vol. i, 1972, Vol. II, 1973.

[BI] Bell, C.G. and Newell, A., Computer Structures:
Readings and Examples, McGraw-Hill, 1971.

[B2] Brooks, F.B., The Mythical Man Month, Addison-
Wesley, 1975.

[CI] Carnap, R., Meaning and Necessity, University of
Chicago Press, 1956.

[C68] Curriculum 68 - A Report of the ACM Curriculum
Committee on Computer Science, CACM, March 1968.

[DSIPL] Data Structures in Programming Languages,
Proceedings of a Symposium, SIGPLAN Notices,
February 1971.

[DI] Dijkstra, E.W.~ Notes on Structured Programming,
in Structured Programming, Dahl, Dijkstra and
Hoare, Academic Press, 1972.

[D2] Dijkstra, E.W., A Discipline of Programming,
Prentice-Hall, 1976.

[ICRS] Proc. International Conference on Reliable
Software, April 1975,

[KI] Knuth, D.E., The Art of Computer Programming,
Vol. I: Fundamental Algorithms (1968), Vol. II:
Seminumerical Algorithms (1969), Vol. III: Sort-
ing and Searching (1973), Vols. IV-VII to be
published, Addison-Wesley.

[K2] Knuth, D.E., Computer Science and its Relation
to Mathematics, American Mathematical Monthly,
1973.

[K3] Knuth, D.E., Mathematical Analysis of Algorithms,
Proc. IFIP 1971, North-Holland, 1972.

[K4] Kuhn, T.S., The Structure of Scientific Revolu-
tions, University of Chicago Press, 1970.

[MI] Manna, Z., Mathematical Theory of Computation,
McGraw-Hill, 1974.

[NI] Newell, A., Perlis, A.J. and Simon, H.A., Com-
puter Science, Science 157: 1373-74, 1967.

[RI] Ross, D.T., Plex i: Semantics and the Need for
Rigor, Softech Report, Dec. 1975.

[SI] Sammet, J., Programming Languages: History and
Fundamentals, Prentice-Hall, 1968.

[$2] Shannon, C.E. and Weaver, W., The Mathematical
Theory of Communication, University of Illinois
Press, 1962.

[$3] Strassen, V. Gausslan Elimination is not
Optimal, Numerische Mathematik, Vol. 13, 354-
356, 1969.

[$4] Standish, T.A., Data Structures - an Axiomatic
Approach, Computer Science Dept., Univ. of
Calif., Irvine, May 1976.

[WI] Wegner, Peter, Three Computer Cultures, Computer
Technology, Computer Mathematics and Computer
Science, in Advances in Computers Vol. i0,
Academic Press, 1971.

[W2] Wegner, Peter, Programming Languages, Informa-
tion Structures and Machine Organization,
McGraw-Hill~ 1968.

[W3] Wegner, Peter, Abstraction - a Tool for the Man-
agement of Complexity? Proc. 4th Texas Confer-
ence on Computing~ Nov. 1975.

3 3 0

